What type of ion exchanger is cm sephadex




















As the equilibrium is dynamic, there is a continual, rapid interchange of molecules of component A between the two phases. The fraction of time, fm, that an average molecule of A spends in the mobile phase is given by:. V m : Volume of the mobile phase [ 1 ]. The mechanism of the anion and cation exchange are very similar. When analytes enter to the ion exchange column, firstly they bind to the oppositely charged ionic sites on the stationary phase through the Coulombic attraction [ 2 ].

If the charges on both ions are same both are positive or negative the force is repulsive, if they are different one positive and the other negative the force is attractive. When the ion charge of the species increase Divalent ion should interact more strongly than a monovalent ion and when the dielectric constant decrease Two oppositely charged molecules increased more strongly in an organic solvent than in water , the interactions increase.

On the other hand the distance between the charges increases the interactions decrease. Additionally, other interactions, especially, van der Waals forces participate to the Coulombic forces [ 2 , 17 ]. Ion exchange chromatography, which is also known as adsorption chromatography, is a useful and popular method due to its;. General components of an ion-exchange chromatography are presented as below Figure 4.

Ion-exchange Chromatography System. In ion-exchange chromatography, adsorption and desorption processes are determined by the properties of the three interacting entities;. In ion-exchange chromatography, numerous stationary phases are available from different manufacturers, which vary significantly in a number of chemical and physical properties [ 6 , 18 ].

Stationary phases comprised of two structural elements; the charged groups which are involved in the exchange process and the matrix on which the charged groups are fixed [ 18 ].

Ion exchangers are characterized both by the nature of the ionic species comprising the fixed ion and by the nature of the insoluble ion-exchange matrix itself [ 1 ]. Ion exchangers are called cation exchangers if they have negatively charged functional groups and possess exchangeable cations. Anion exchangers carry anions because of the positive charge of their fixed groups [ 15 ]. The charged groups determine the specifity and strength of protein binding by their polarity and density while the matrix determines the physical and chemical stability and the flow characteristics of the stationary phase and may be responsible for unspecific binding effects [ 18 ].

General structure fibrous or beaded form , particle size and variation, pore structures and dimensions, surface chemistry hydrophilic or hydrophobic , swelling characteristics of matrix are important factors which effect chromatographic resolution [ 11 , 18 ].

Porosity of ion exchange beads can be categorized as non-porous, microporous and macroporous. Figure 5 and Figure 6 [ 14 ]. High porosity offers a large surface area covered by charged groups and so provides a high binding capacity [ 13 ].

However when compared with beaded matrix fibrous ion exchangers based on cellulose exhibit lower chromatographic resolution [ 14 ]. On the other hand high porosity is an advantage when separating large molecules [ 13 ] and prefractionation [ 14 ]. Non-porous matrices are preferable for high resolution separations when diffusion effects must be avoided [ 13 ]. Micropores increase the binding capacity but cause to a band broadening.

Another disadvantage of microporous beads is that protein can bind to the surface of the beads near to the pores, so penetration of proteins into the pores can prevent or slow down.

These problems are overcome by using macroporous particles with pore diameters of about nm which are introduced recently. These kinds of particles behave differently compared to microporous materials with respect to microflow characteristics the new term perfusion chromatography has been created [ 14 ].

Schematic presentation of different matrix types a non-porous beads b microporous beads c macroporous beads. Furthermore a new matrix type which has been recently introduced is based on a completely new principle and exhibits improved chromatographic features when compared with conventional ion exchangers.

This matrix which is known as continuous bed does not consist of ion exchange beads or fibers. The matrix is synthesized in the column by polymerization and established from continuous porous support consisting of a nodule chains Figure 7. The advantages of that matrix are mainly due to the more homogeneous mobile phase flow and short diffusion distances for the proteins.

This is explained by the non-beaded form and the unique pore structure of the support [ 14 ]. Size, size distribution and porosity of the matrix particles are the main factors which affect the flow characteristics and chromatographic resolution. Small particles improved chromatographic resolution. Stationary phases with particle of uniform size are superior to heterogenous materials with respect to resolution and attainable flow rates. The pore size of ion exchange bead directly effect the binding capacity for a particular protein dependent on the molecular weight of the protein because it determines the access of proteins to the interior of the beads.

Binding of large proteins can be restricted to the bead surface only so that the total binding capacity of the ion exchanger is not exploited Pore diameter of 30 nm is optimal for proteins up to a molecular weight of about Continuous bed matrix. In order to minimize non-specific interactions with sample components inert matrix should be used.

High physical stability provides that the volume of the packed medium remains constant despite extreme changes in salt concentration or pH for improving reproducibility and avoiding the need to repack columns.

High physical stability and uniformity of particle size facilitate high flow rates, particularly during cleaning or re-equilibration steps, to improve throughput and productivity [ 13 ].

There are pH and pressure limits for each stationary phases. For example pH values higher than 8 should not used in silica based materials which are not coated with organic materials. Matrix stability also should be considered when the chemicals such as organic solvents or oxidizing agents should be required to use or when they are chosen for column cleaning [ 14 ]. Matrices which are obtained by polymerization of polystyrene with varying amounts of divinylbenzene are known as the original matrices for ion exchange chromatography.

However these matrices have very hydrophobic surface and proteins are irreversibly damaged due to strong binding. Ion exchangers which are based on cellulose with hydrophilic backbones are more suitable matrices for protein separations. Other ion exchange matrices with hydrophilic properties are based on agarose or dextran [ 14 ]. Dextran; Considerable swelling as a function of ionic milieu, improved materials by cross-linking.

Agarose; Swelling is almost independent of ionic strength and pH, high binding capacity obtained by production of highly porous particles. Coated Silica; Hydrophilic surface [ 14 ].

In addition to electrostatic interactions between stationary phase and proteins, some further mechanisms such as hydrophobic interactions, hydrogen bonding may contribute to protein binding. Hydrophobic interactions especially occur with synthetic resin ion exchangers such as which are produced by copolymerization of styrene and divinylbenzene.

These materials are not usually used for separation of proteins. However new ion exchange materials that consist of styrene-divinylbenzene copolymer beads coated with hydrophilic ion exchanger film were introduced.

According to the retention behavior of some proteins, it is considered that coating of the beads so efficient that unspecific binding due to hydrophobic interactions cannot be observed.

Silica particles have also been coated with hydrophilic matrix. Acrylic acid polymers are also used for the protein separation in ion exchange chromatography.

These polymers are especially suitable for purification of basic proteins [ 14 ]. The functional groups substituted onto a chromatographic matrix determine the charge of an ion exchange medium; positively-charged anion exchanger or a negatively-charged cation exchanger [ 13 ].

Both exchangers can be further classified as strong and weak type as shown in Table 1. The terms weak and strong are not related to the binding strength of a protein to the ion exchanger but describe the degree of its ionization as a function of pH [ 14 ].

Strong ion exchangers are completely ionized over a wide pH range, while weak ion exchangers are only partially ionized a narrow pH range [ 1 , 11 ]. Therefore with strong ion exchangers proteins can adsorb to several exchanger sites. For this reason strong ion exchangers are generally used for initial development and optimization of purification protocols. On the other hand weak ion exchangers are more flexible in terms of selectivity and are a more general option for the separation of proteins that retain their functionality over the pH range as well as for unstable proteins that may require mild elution conditions [ 11 ].

Alkylated amino groups for anion exchangers and carboxy, sulfo as well as phosphato groups for cation exchangers are the most common functional groups used on ion exchange chromatography supports [ 14 ]. Sulfonic acid exchangers are known as strong acid type cation exchangers.

Quaternary amine functional groups are the strong base exchangers whereas less substituted amines known as weak base exchangers [ 1 ]. Number and kind of the substituents are determined the basicity of amino-groups. Immobilized tertiary and quaternary amines proved to be useful for ion exchange chromatography.

Immobilized diethylaminoethyl and carboxymethyl groups are the most widely used ion exchangers [ 11 ]. The ion exchange capacity of an ion-exchanger is determined by the number of functional groups per unit weight of the resin [ 13 ]. Density and accessibility of these charged groups both on the surface and within the pores define the total binding capacity. Ionic medium and the presence of other proteins if a particular protein is considered also affect the binding capacity.

However, under defined conditions, the amount of the certain protein which is bound to ion exchanger is more suitable parameter for determining and comparing the capacity of ion exchange chromatography. Albumin for anion exchangers and hemoglobin for cation exchangers is usually used for this purpose. Determination of the binding capacity before the experiment is generally recommended because the capacity for a particular protein depends on its size and also on the sample composition.

The binding capacity of a column can be increased for proteins which are retained on the column at high salt concentrations. The salt concentration is adjusted to a suitable concentration in which the protein of interest tightly bound to the ion exchanger while others which have lower affinity pass through the column without occupying binding sites [ 14 ].

In ion exchange chromatography generally eluents which consist of an aqueous solution of a suitable salt or mixtures of salts with a small percentage of an organic solvent are used in which most of the ionic compounds are dissolved better than in others in. Therefore the application of various samples is much easier [ 1 , 3 ]. Sodium chloride is probably the most widely used and mild eluent for protein separation due to has no important effect on protein structure.

However NaCl is not always the best eluent for protein separation. Retention times, peak widths of eluted protein, so chromatographic resolution are affected by the nature of anions and cations used. These effects can be observed more clearly with anion exchangers as compared to cation exchangers [ 14 ]. The salt mixture can itself be a buffer or a separate buffer can be added to the eluent if required.

The competing ion which has the function of eluting sample components through the column within reasonable time is the essential component of eluting sample. Nature and concentration of the competing ions and pH of the eluent are the most important properties affecting the elution characteristics of solute ions [ 1 ].

The eluent pH has considerable effects on the functional group which exist on the ion exchange matrix and also on the forms of both eluent and solute ions. The selectivity coefficient existing between the competing ion and a particular solute ion will determine the degree of that which competing ion can displace the solute ion from the stationary phase.

As different competing ions will have different selectivity coefficients, it follows that the nature of competing ion will be an important factor in determining whether solute ions will be eluted readily. The concentration of competing ion exerts a significant effect by influencing the position of the equilibrium point for ion-exchange equilibrium. The higher concentration of the competing ion in the eluent is more effectively displace solute ions from the stationary phase, therefore solute is eluted more rapidly from the column.

Additionally elution of the solute is influenced by the eluent flow-rate and the temperature. Faster flow rates cause to lower elution volumes because the solute ions have less opportunity to interact with the fixed ions. Temperature has relatively less impact, which can be change according to ion exchange material type. Enhancement of the temperature increases the rate of diffusion within the ion-exchange matrix, generally leading to increased interaction with the fixed ions and therefore larger elution volumes.

At higher temperatures chromatographic efficiency is usually improved [ 1 ]. Eluent degassing is important due to trap in the check valve causing the prime loose of pump.

Loss of prime results in erratic eluent flow or no flow at all. Sometimes only one pump head will lose its prime and the pressure will fluctuate in rhythm with the pump stroke. Another reason for removing dissolved air from the eluent is because air can get result in changes in the effective concentration of the eluent. Carbon dioxide from air dissolved in water forms of carbonic acid. Carbonic acid can change the effective concentration of a basic eluent including solutions of sodium hydroxide, bicarbonate and carbonate.

Usually degassed water is used to prepare eluents and efforts should be made to keep exposure of eluent to air to a minimum after preparation. Modern inline degassers are becoming quite popular [ 10 ]. For separation the eluent is pumped through the system until equilibrium is reached, as evidenced by a stable baseline. The time required for equilibrium may vary from a couple of minutes to an hour or longer, depending on the type of resin and eluent used [ 10 ]. Before the sample injection to the column should be equilibrated with eluent to cover all the exchange sites on the stationary phase with the same counter ion.

When the column is equilibrated with a solution of competing ion, counter ions associated with the fixed ions being completely replaced with competing ions. In this condition the competing ions become the new counter ions at the ion exchange sites and the column is in the form of that particular ion [ 1 ].

Isocratic elution or gradient elution can be applied for elution procedure. A single buffer is used throughout the entire separation in isocratic elution.

Sample components are loosely adsorbed to the column matrix. As each protein will have different distribution coefficient separation will achieved by its relative speeds of migration over the column. Therefore in order to obtain optimum resolution of sample components, a small sample volume and long exchanger column are necessary. This technique is time consuming and the desired protein invariably elutes in a large volume.

However no gradient-forming apparatus is required and the column regeneration is needless. Alteration in the eluent composition is needed to achieve desorption of desired protein completely. Continuous gradients generally give better resolution than stepwise gradients [ 11 ]. Additives which are protective agents found in the mobile phase are generally used for maintain structure and function of the proteins to be purified. This is achieved by stimulating an adequate microenvironment protection against oxidation or against enzymatic attacks [ 14 ].

Any additives used in ion exchange chromatography, should be checked for their charge properties at the working pH in order to avoid undesired effects due to adsorption and desorption processes during chromatography [ 13 - 14 ]. It is recommended to include in the elution buffer those additives in a suitable concentration which have been used for stabilization and solubilization of the sample.

Otherwise precipitation may occur on the column during elution [ 14 ]. For example; zwitterionic additives such as betaine can prevent precipitation and can be used at high concentrations without interfering with the gradient elution. Detergents are generally useful for solubilization of proteins with low aqueous solubility. Anionic, cationic, zwitterionic and non-ionic neutral detergents can be used during ion exchange chromatography. Guanidine hydrochloride or urea, known as denaturing agents can be used for initial solubilization of a sample and during separation.

However, they should use if there is a requirement. Guanidine is a charged molecule and therefore can participate to the ion exchange process in the same way as NaCl during separation process [ 13 ]. Commonly used eluent additives which have been successfully used in ion exchange chromatography can be given as follow;. In ion exchange chromatography, pH value is an important parameter for separation and can be controlled and adjusted carefully by means of buffer substances [ 18 ].

In order to prevent variation in matrix and protein net charge, maintenance of a constant mobile phase pH during separation is essential to avoid pH changing which can occur when both protein and exchanger ions are released into the mobile phase [ 11 ]. By means of buffer substances pH value can be controlled and adjusted. Thus a suitable pH range, in which the stability of sample is guaranteed, has to be identified.

Keeping of the sample function is related with the preservation of its three dimensional structure as well as with its biological activity [ 18 ].

A number of buffers are suitable for ion-exchange chromatography. A number of important factors influences the selection of mobile phase including buffer charge, buffer strength and buffer pH [ 11 ]. Properties of good buffers are high buffering capacity at the working pH, high solubility, high purity and low cost. The buffer salt should also provide a high buffering capacity without contributing much to the conductivity and should not interact with the ion exchanger functional groups as well as with media [ 11 , 17 ].

The buffering component should not interact with the ion exchanger because otherwise local pH shifts can occur during the exchange process which may interfere the elution. Interactions with stationary phase as well as with additives of the mobile phase and with subsequent procedures may be occur with buffer component and selected pH range.

Precipitation of metal oxides and hydroxides can occur under alkaline conditions. Buffer components may also affect enzymatic assays used for screening and analysis of chromatography fractions [ 14 ].

The concentration of buffer salts usually ranges from 10 to 50 mM. Commonly used buffers are presented in Table 2 and Table 3 for cation and anion exchange chromatography [ 17 ]. Additionally the buffering component should not act as an eluting ion by binding to the ion exchanger. Anionic buffer component such as phosphate or MOPS in cation exchange chromatography and cationic buffers such as ethanolamine, Tris and Tricine in anion exchange chromatography are recommended.

Besides interactions of buffer component with stationary phase, there are also possible interactions with additives of the mobile phase. However there are examples of successful separations at which the buffering capacity is very low [ 17 - 18 ].

It has to be considered that the pKa is a temperature dependent value. Performing on ion exchange separation with the same elution buffer at room temperature or in the cold room can have a remarkable effect on the buffer capacity. For optimal binding of a sample ion to an ion-exchanger the ionic strength and thus also the buffer concentrations has to be low in sample and equilibration buffers [ 18 ]. Conductivity detector is the most common and useful detector in ion exchange chromatography.

However UV and other detectors can also be useful [ 10 ]. Conductivity detection gives excellent sensitivity when the conductance of the eluted solute ion is measured in an eluent of low background conductance. Therefore when conductivity detection is used dilute eluents should be preferred and in order for such eluents, to act as effective competing ions, the ion exchange capacity of the column should be low [ 1 ].

Although recorders and integrators are used in some older systems, generally in modern ion exchange chromatography results are stored in computer. Retention time and peak areas are the most useful information. Retention times are used to confirm the identity of the unknown peak by comparison with a standard. In order to calculate analyte concentration peak areas are compared with the standards which is in known concentration [ 10 ].

Direct detection of anions is possible, providing a detector is available that responds to some property of the sample ions. For example anions that absorb in the UV spectral region can be detected spectrophotometrically. In this case, an eluent anion is selected that does not absorb UV.

The eluent used in anion chromatography contains an eluent anion, E -. Anions with little or no absorbance in the UV spectral region can be detected spectrophotometrically by choosing a strongly absorbing eluent anion. An anion with benzene ring would be suitable [ 10 ]. The eluent anion must be compatible with the detection method used. For conductivity the detection E should have either a significantly lower conductivity than the sample ions or be capable of being converted to a non-ionic form by a chemical suppression system.

When a spectrophotometric detection is employed, E will often be chosen for its ability to absorb strongly in the UV or visible spectral region. The concentration of E - in the eluent will depend on the properties of the ion exchanger used and on the types of anions to be separated [ 10 ].

Ion exchange chromatography can be applied for the separation and purification of many charged or ionizable molecules such as proteins, peptides, enzymes, nucleotides, DNA, antibiotics, vitamins and etc. Examples in which ion exchange chromatography was used as a liquid chromatograpic technique for separation or purification of bioactive molecules from natural sources can be given as below. Since the isolation of pharmacologically active substances which are responsible for the activity became possible at the beginning of the 19 th century drug discovery researches have increased dramatically [ 33 ].

Therefore within the last decade there has also been increasing interest in the liquid chromatographic processes because of the growing pharmaceutical industry and needs from the pharmaceutical and specialty chemical industries for highly specific and efficient separation methods. Several different types of liquid chromatography techniques are utilized for isolation of bioactive molecules from different sources [ 25 ].

Ion exchange chromatography is probably the most powerful and classic type of liquid chromatography. It is still widely used today for the analysis and separation of molecules which are differently charged or ionizable such as proteins, enzymes, peptides, amino acids, nucleic acids, carbohydrates, polysaccharides, lectins by itself or in combination with other chromatographic techniques [ 34 ]. Additionally ion exchange chromatography can be applied for separation and purification of organic molecules from natural sources which are protonated bases such as alkaloids, or deprotonated acids such as fatty acids or amino acid derivatives [ 35 ].

Ion exchange chromatography has many advantages. This method is widely applicable to the analysis of a large number of molecules with high capacity. The technique is easily transferred to the manufacturing scales with low cost.

High levels of purification of the desired molecule can be achieved by ion exchange step. Follow-up of the nonsolvent extractable natural products can be realized by this technique [ 17 , 35 ]. Consequently ion exchange chromatography, which has been used in the separation of ionic molecules for more than half a century is still used as an useful and popular method for isolation of natural products in modern drug discovery and it continue to expand with development of new technologies.

Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution 3. Help us write another book on this subject and reach those readers. Login to your personal dashboard for more detailed statistics on your publications. Edited by Dean Martin. Edited by Amal Ali Elkordy. We are IntechOpen, the world's leading publisher of Open Access books. Built by scientists, for scientists. Our readership spans scientists, professors, researchers, librarians, and students, as well as business professionals.

Downloaded: Ion exchange mechanism Ion-exchange chromatography which is designed specifically for the separation of differently charged or ionizable compounds comprises from mobile and stationary phases similar to other forms of column based liquid chromatography techniques [ 9 - 11 ]. Table 1. Weak and Strong type anion and cation exchangers. Mobile phase Eluent In ion exchange chromatography generally eluents which consist of an aqueous solution of a suitable salt or mixtures of salts with a small percentage of an organic solvent are used in which most of the ionic compounds are dissolved better than in others in.

Commonly used eluent additives which have been successfully used in ion exchange chromatography can be given as follow; EDTA; Ethylenediamine tetraacetic acid Polyols; Glycerol, glucose, and saccharose Detergents; Urea and guanidinium chloride Lipids Organic solvents Zwitterions Sulfhydryl reagents Ligands Protease inhibitors [ 14 ].

Buffer In ion exchange chromatography, pH value is an important parameter for separation and can be controlled and adjusted carefully by means of buffer substances [ 18 ]. Substance pK a Working pH Citric acid 3.

Table 2. Commonly used buffers for cation-exchange chromatography. Table 3. Commonly used buffers for anion-exchange chromatography. Detection Conductivity detector is the most common and useful detector in ion exchange chromatography.

Sample 1: Source: Nigella sativa Linn. Extraction procedure: Water extract of N. Powder was dissolved in phosphate buffer saline pH 6. The supernatant was collected as the soluble extract by removing the oily layer and unsoluble pellet.

Protein concentration of the soluble extract was determined with Bradford method. Then proteins dialyzed against 0. Eluent: 0. Fractions of each were collected with an increasing concentration of NaCl Detection: UV detector at nm Analyte s : Number of protein bands ranging from kDa molecular mass [19]. Sample 2: Source: Olea europea L. Extraction procedure: Extract was prepared from the leaves and roots of two years old olive plants with water at room temperature.

Internal standard as D O- methylglucopyranose MeGlu was used and added in appropriate volume. Extraction was accomplished by shaking for 15 min and finally the suspension was centrifuged at rpm for 10 min. Before the injection the aqueous phase was filtered and passed on a cartridge OnGuard A Dionex to remove anion contaminants. Weighing Papers and Dishes. Cell Culture Media. Cryogenic Storage. Fetal Calf and Other Sera. View All Cell Culture.

Bioprocess Systems And Accessories. Cell Based Assays. Flow Cytometry. Microscopes and Cellular Imaging. View All Cell Analysis. Custom Assays, Antibodies, Oligos. Centrifugal Filter Devices.

Centrifuge Accessories. Centrifuge Adapters. Centrifuge Buckets. Floor Model Centrifuges. Tubes and Bottles. PCR Tubes. PCR Plates. DNA Extraction and Purification.

View All PCR. View All Molecular Biology. Search online for Assays, Antibodies, Oligos. Volumetric Pipettes. Pipette Tips and Racks. All Pipets, Pipetters and Tips. Syringes and Needles. Syringe Filters. Sharps Containers. All Syringes and Needles. See All Categories. Please sign in to view account pricing and product availability. Sign In Don't have a profile? Separate molecules over broad molecular weight and pH ranges Brand: Cytiva Add to basket.



0コメント

  • 1000 / 1000